В США создан новый вид стеклообразного теплоносителя для гелиотермальных электростанций. Его рабочая температура - 1 200 ˚С, что в два с лишним раза выше, чем у аналогов. Он может не только повысить КПД солнечных электростанций, но и снизить стоимость хранения их энергии ночью.
Солнечная энергия имеет две фундаментальные проблемы: больше всего её тогда и там, когда и где потребление электричества минимально, и наоборот. В развитых странах электропотребление максимизируется вечером и зимой, а летом и в полдень резко падает. И если себестоимость солнечных батарей и киловатта полученной от светила энергии постоянно падает, то про стоимость аккумуляции электричества этого сказать нельзя. А ведь как только доля гелиоэнергетики превысит 20% в любой замкнутой энергосистеме, энергоснабжение без хранилища избытков электричества станет слишком неустойчивым. Способов решения у этой проблемы много, но все они пока дороги.
Компания Halotechnics пытается подойти к вопросу с другой стороны. Более эффективным будет сохранять солнечную энергию не в виде электричества, а как тепло. Существующие разработки Halotechnics делают её лидером в этом направлении: растворы расплавленных солей на основе NO3 с максимальной рабочей температурой в 565 ˚С обеспечивают относительно дешёвое рабочее тело в гелиотермальной энергетике, где с помощью системы концентрирующих солнечный свет зеркал нагревается ёмкость с расплавленным раствором солей, после чего последний передаёт тепловую энергию обычной турбине.
Возможно ли использование теплоаккумулятора на таких солях? Конечно. Никакой проблемы тут нет: с ростом объёма нагретого раствора теплопотери по периметру резервуара будут падать, так как площадь поверхности хранилища расплавленных солей будет расти пропорционально квадрату, а объём теплоаккумулирующих веществ - пропорционально кубу увеличения линейных размеров. В уже используемых теплоаккумулирующих мощностях в хранилище объёмом 68 м³ удаётся сохранить в течение ночи до 1,44 тераджоулей. При этом тепловые потери не превышают 1%.
Проблема таких теплоаккумуляторов в другом. Расплавленные растворы солей и как рабочее тело гелиотермальных электростанций, и как тепловая батарея имеют один и тот же недостаток - относительно низкую рабочую температуру. Для повышения КПД турбинной установки и эффективности накопления тепла требуется увеличение температуры теплоносителя. Если с первым пунктом всё ясно (цикл Карно, etc.), то второй требует пояснений. Чем выше температура рабочего тела, хранящего тепло, тем меньше этого носителя требуется - а значит, тем меньшие материальные затраты необходимы для строительства теплонакапливающих мощностей. Скажем, тонна расплавленной соли стоит всего тысячу долларов, но средняя гелиоТЭС использует около 30 тыс. тонн таких солей, а ведь для них нужен ещё резервуар, трубы и т. п.
Чтобы повысить эффективность теплоносителя, Halotechnics намерена использовать новый материал, который при рабочей температуре в 1 200 ˚С будет пребывать в стеклообразном состоянии. Состав самой смеси пока не раскрывается: по словам разработчиков, они перепробовали 18 тыс. комбинаций, прежде чем нашли удовлетворительную по соотношению «цена - качество». Новый теплоноситель сохраняет в одной единице объёма в три раза больше тепла, чем растворы расплавленных солей.
Весьма важно и то, что его использование как рабочего тела гелиотермальных электростанций позволит повысить их общий КПД с 42 до 45% за счёт применения ПГУ. По уверениям Halotechnics, проведённое предварительное ТЭО показало, что для гелиоТЭС в Калифорнии можно ожидать цены генерации на уровне 6 центов за кВт•ч (1,75 рубля) - неплохая по американским меркам себестоимость и для газовых ТЭС (из-за относительно высокой цены на газ). Основной причиной столь резкого снижения (сегодня 14-16 центов для гелиоТЭС считается средним показателем) станет даже не рост КПД, а увеличение коэффициента использования установленной мощности (КИУМ). Если нынче в большинстве геотермальных электростанций турбины работают днём, то с новым теплонакопителем они будут работать вдвое дольше, повышая КИУМ также вдвое - а значит, резко снижая стоимость одного кВт•ч, производимого такой станцией.
Хотя первые опыты с новым веществом в условиях опытной гелиоТЭС запланированы на лето, широкое внедрение нового теплоносителя кажется делом долгим, ведь придётся существенно изменить организацию самих электростанций, а не только их тепловых хранилищ, применить другие конструкционные материалы для трубопроводов, насосов и т. д.
Александр Березин